WINDINGS     WINDINGS   WINDINGS   WINDINGS   WINDINGS  WINDINGS  WINDINGS

Share on Facebook
Share on Twitter
Share via e-mail
Share on Delicious
Share on Digg
Share on Google Bookmarks
Share on LiveJournal
Share on Newsvine
Share on Reddit
Share on Stumble Upon
Home Transformers Ozone PCB Power Supplies Projects Contact Us

Ozone

Ozone (ˈoʊzoʊn; O3), or trioxygen, is a triatomic molecule, consisting of three oxygen atoms. It is an allotrope of oxygen that is much less stable than the diatomic allotrope (O2), breaking down in the lower atmosphere to normal dioxygen. Ozone is formed from dioxygen by the action of ultraviolet light and also atmospheric electrical discharges, and is present in low concentrations throughout the Earth's atmosphere. In total, ozone makes up only 0.6 ppm of the atmosphere.

Ozone was proposed as a new substance in air in 1840, and named, even before its chemical nature was known, after the Greek verb ozein (ὄζειν, "to smell"), from the peculiar odor after lightning storms. Ozone's odor is sharp, reminiscent of chlorine, and detectable by many people at concentrations of as little as 10 ppb in air. Ozone's O3 formula was determined in 1865. The molecule was later proven to have a bent structure and to be diamagnetic. In standard conditions, ozone is a pale blue gas that condenses at progressively cryogenic temperatures to a dark blue liquid and finally a violet-black solid.

Industry

The largest use of ozone is in the preparation of pharmaceuticals, synthetic lubricants, and many other commercially useful organic compounds, where it is used to sever carbon-carbon bonds. It can also be used for bleaching substances and for killing microorganisms in air and water sources. Many municipal drinking water systems kill bacteria with ozone instead of the more common chlorine. Ozone has a very high oxidation potential. Ozone does not form organochlorine compounds, nor does it remain in the water after treatment. Ozone can form the suspected carcinogen bromate in source water with high bromide concentrations. The Safe Drinking Water Act mandates that these systems introduce an amount of chlorine to maintain a minimum of 0.2 μmol/mol residual free chlorine in the pipes, based on results of regular testing. Where electrical power is abundant, ozone is a cost-effective method of treating water, since it is produced on demand and does not require transportation and storage of hazardous chemicals. Once it has decayed, it leaves no taste or odor in drinking water.

Corona discharge method

This is the most common type of ozone generator for most industrial and personal uses. While variations of the "hot spark" coronal discharge method of ozone production exist, including medical grade and industrial grade ozone generators, these units usually work by means of a corona discharge tube. They are typically cost-effective and do not require an oxygen source other than the ambient air to produce ozone concentrations of 3–6%. Fluctuations in ambient air, due to weather or other environmental conditions, cause variability in ozone production. However, they also produce nitrogen oxides as a by-product. Use of an air dryer can reduce or eliminate nitric acid formation by removing water vapor and increase ozone production. Use of an oxygen concentrator can further increase the ozone production and further reduce the risk of nitric acid formation by removing not only the water vapor, but also the bulk of the nitrogen.

Industrially, ozone is used to:

Disinfect laundry in hospitals, food factories, care homes etc.

Disinfect water in place of chlorine

Deodorize air and objects, such as after a fire. This process is extensively used in fabric restoration

Kill bacteria on food or on contac surfaces

Sanitize swimming pools and spas

Kill insects in stored grain

Scrub yeast and mold spores from the air in food processing plants

Wash fresh fruits and vegetables to kill yeast, mold and bacteria

Chemically attack contaminants in water (iron, arsenic, hydrogen sulfide, nitrites, and complex organics lumped together as "colour"

Provide an aid to flocculation (agglomeration of molecules, which aids in filtration, where the iron and arsenic are removed)

Manufacture chemical compounds via chemical synthesis

Clean and bleach fabrics (the former use is utilized in fabric restoration; the latter use is patented)

Assist in processing plastics to allow adhesion of inks

Age rubber samples to determine the useful life of a batch of rubber

Eradicate water borne parasites such as Giardia lamblia and Cryptosporidium in surface water treatment plants.

Ozone is a reagent in many organic reactions in the laboratory and in industry. Ozonolysis is the cleavage of an alkene to carbonyl compounds.

Many hospitals around the world use large ozone generators to decontaminate operating rooms between surgeries. The rooms are cleaned and then sealed airtight before being filled with ozone which effectively kills or neutralizes all remaining bacteria.

Ozone is used as an alternative to chlorine or chlorine dioxide in the bleaching of wood pulp. It is often used in conjunction with oxygen and hydrogen peroxide to eliminate the need for chlorine-containing compounds in the manufacture of high-quality, white paper.

Ozone can be used to detoxify cyanide wastes (for example from gold and silver mining) by oxidizing cyanide to cyanate and eventually to carbon dioxide).